1) obstruct k-frames over varios skeleta.
2) say when we can reduce the structure group egg. $w_{1}(E)=0 \Leftrightarrow$ structure group reduces from $O(n)$ to $S O(n)$
3) differentiate bundles
4) obstruct insmarsions and embeddirigr
5) obstruct bounding a compact nfl.
there are many more applications and similarly for $c_{i}(E)$ and $p_{i}(E)$
example:
If Pantrjagin numbers not 0 then
6) no orientation reversing diffeomorphisus and
7) does not bound an compact oriented mfd eg. $\mathbb{C} P^{2 n}$ has no or n reversing differ. and does not bound an oriented mfd
note: can prove both these with intersection pairings (eg. Poincaré duality)
C. Classifying Spaces

Recall $G_{n, m}=$ all n-din' l subspaces in \mathbb{R}^{m}
we have $G_{n, m} \subset G_{n, m+1}$
so $G_{n}=\bigcup_{m} G_{n, m}$
or $G_{n}=$ all $n-\operatorname{dis}^{\prime} l$ subspaces of \mathbb{R}
let $E_{n}=\left\{(l, v) \in G_{n} \times \mathbb{R}^{\infty}: v+l\right\} \quad$ so $p(l, v)=l$
exencise: $E_{n} \xrightarrow{P} G_{n}:(h, v) \rightarrow l$ is an n-diml vectior bundle
Hint: $f l \in G_{n}$ let $\pi_{l}: \mathbb{R}^{\infty} \rightarrow l$ be orthogonal proj
let $U_{l}=\left\{\ell^{\prime} \in G_{n}: \pi_{l}\left(l^{\prime}\right)\right.$ has dins $\left.n\right\}$
Show: V_{l} open and
$h: p^{-1}\left(U_{l}\right) \rightarrow U_{l} \times l$ is a local trio.

$$
\left(l^{\prime}, v\right) \longmapsto\left(l^{\prime}, \pi_{l}(r)\right)
$$

Th ~12:
If X is para compact, then

$$
\begin{aligned}
{\left[X, G_{n}\right] } & \rightarrow \operatorname{Vecf}^{n}(x) \\
f & \longmapsto f^{*}\left(E_{n}\right)
\end{aligned}
$$

is a bijection.

Proof: from $T \boldsymbol{T}$ II. 1 the above map is well-defined! to go further we first observe
Claim: for $E \rightarrow X$ an \mathbb{R}^{n}-bundle

$$
E \cong f^{*}\left(E_{n}\right) \text { some } f: X \rightarrow G_{n}
$$

Jo map $E \rightarrow \mathbb{R}^{\infty}$ that is linear injective on each fiber to see this suppose $f: x \rightarrow G_{n}$ and $\psi: E \stackrel{\equiv}{\equiv} f^{*}\left(E_{n}\right)$ so we have

$$
\begin{array}{rl}
E & \stackrel{\psi}{\longrightarrow} f^{*}\left(E_{n}\right) \rightarrow E_{n} \longrightarrow \mathbb{R}^{\infty} \\
& \downarrow \\
X & f \\
G_{n}
\end{array}
$$

and top row linear injective on fibers now if $E \xrightarrow{g} \mathbb{R}^{\infty}$ is such a map define $f: X \rightarrow G_{n}!x \longmapsto g\left(\rho^{-1}(x)\right)$ and $\tilde{f}: E \rightarrow E_{n}: v \longmapsto g(v)$
exercise: this implies $f^{*}\left(E_{n}\right) \cong E$
mop in th ${ }^{m}$ is surjective:
given $p: E \rightarrow X$ an \mathbb{R}^{n}-bundle
(we assume X compact Hausdorff, bo OK for paracompact) let $\{U\}_{i=1}^{k}$ be a cover of X by local priv. of E ie. \exists

$$
\phi_{i}: \rho^{-1}(\underbrace{\left.v_{i}\right) \rightarrow v_{2} \times \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}}_{\tilde{\phi}_{i}}
$$

let $\left\{\psi_{i}\right\}$ be a partition of unity subordinate to $\left\{v_{i}\right\}$
set $g: E \rightarrow \underbrace{\mathbb{R}^{n} \times \ldots \times \mathbb{R}^{n}}_{k-\text { times }} \subset \mathbb{R}^{\infty}$

$$
v \longmapsto\left(\psi_{1}(p(v)) \tilde{\phi}_{1}(v), \ldots, \phi_{k}(\rho(v)) \tilde{\phi}_{1}(v)\right)
$$

exercise: g is linear on fibers so $g^{*}\left(E_{n}\right) \cong E$ from above
mop in th ${ }^{\text {m }}$ is infective:
suppose $g_{0}^{*}\left(E_{n}\right) \cong g_{i}^{*}\left(E_{n}\right)$
for $g_{i}: x \rightarrow G_{n}$
from above $\exists f_{i}: X \rightarrow \mathbb{R}^{\infty}$ st. f_{i} linear injective on fibers from proof above can assume f_{0} maps to odd coors is \mathbb{R}^{∞} and f_{1} maps to even coords in \mathbb{R}^{∞}
let $f_{t}=(1-t) f_{0}+t f_{1}$
exercise: f_{t} is linear injective on each fiber set $g_{t}(x)=f_{t}\left(p^{-1}(x)\right)$
exercise: this is a homotopy g_{0} to g_{1}
note: Claim from previous section that any line bundle $p: E \rightarrow X$ comes from $f^{*}(\gamma)$ clearly follows (ne $\gamma=E_{1}$)
more generally given a Lie group G one can show there is a space $B G$ and $E G$ such that

$$
\begin{aligned}
G \rightarrow & E G \\
& \downarrow \\
& B G
\end{aligned}
$$

is a principal bundle and $E G$ is weakly contractible we call BG the classifying space for principal G-bundles
note:

$$
H_{k}(E G) \rightarrow H_{k}(B G) \rightarrow H_{k-1}(G) \rightarrow H_{k-1}^{\substack{11 \\
0}} \left\lvert\, \begin{gathered}
\text { (EG) } \\
0
\end{gathered}\right.
$$

so $H_{h}(B G) \cong H_{k-1}(G) \quad \forall k \geq 1$

Th ${ }^{m} 13:$

$$
[X, B G] \underset{\substack{\text { one-to-one } \\ \text { correspondace }}}{\longrightarrow} \text { Principal G-bundles over X }
$$

Th m 14:
the homotopy type of $B G$ is unique
examples:

1) G_{n} is the classifying space of \mathbb{R}^{n}-bundles (really $\mathcal{Z}\left(E_{n}\right)$ is the $S L(n, \mathbb{R})$ bundle and G_{n} the $S L(n, \mathbb{R})$ space)
exercise: $F\left(E_{n}\right)$ is contractible
2) $\mathbb{R} \rightarrow S^{\prime}$ is a privicipol \mathbb{E}-bundle so
principal \mathbb{Z}-bundles over X

$$
\begin{aligned}
& \epsilon \\
& {\left[x, S^{\prime}\right]=[X, K(\mathbb{Z}, 1)] \cong H^{\prime}(x ; \mathbb{Z})} \\
& \text { recall } K\left(Z_{1}, 1\right)=S^{\prime} \begin{array}{c}
\text { Brown representation } \\
\text { thin see next section }
\end{array} \\
& H^{n}(x ; G)=[x, K(G, n)]
\end{aligned}
$$

3) $S^{\infty} \rightarrow \mathbb{R} P^{\infty}$ is a prinicepal $\mathbb{Z} / 2$ bundle
exercise: S^{∞} contractible
note: $O(1) \cong \mathbb{Z} / 2$ so $B O(1)=\mathbb{R} P^{\infty}=K(\mathbb{Z} / 2,1)$ and Tchech line bundles oven X principal $O(1)$ bundles

$$
\begin{gathered}
\leftrightarrow \\
{[x, B O(1)]=\left[x, \mathbb{R} P^{\infty}\right]=[x, K(\mathbb{Z} / 2,1)] \cong H^{\prime}(X ; \mathbb{Z} / 2)}
\end{gathered}
$$

Brown
4) $S^{\infty} \rightarrow S^{\infty} / s^{\prime} \cong \mathbb{C} P^{\infty}$ is a principal S^{\prime}-bundle
so $B S^{\prime}=B U(1)=C P^{\infty}=K(z, 2)$ and
complex lie bundles oven X
principal $\stackrel{\leftrightarrow}{U}(1)$-bundles oven X

$$
[X, B \cup(1)]=\left[X, \mathbb{C} p^{\infty}\right] \cong \underset{\text { Brown }}{\cong} H^{2}(X ; \mathbb{Z})
$$

to prove Th ${ }^{m} 13$ we need a definition a GCW-complex is a space X with a G-action that is a union of skeleta

$$
x^{(0)} \subset x^{(1)} \subset \ldots \subset X^{(n)} \subset \ldots
$$

where for each $k \geq 0$ there is

1) a collection of k-cells e_{i}^{Y}
2) subgroup $H_{1}<G$, and
3) $\phi_{i}:\left(\partial e_{i}^{k} \times G / H_{i}\right)=\left(S^{n-1} \times G / H_{i}\right) \rightarrow \chi^{(k-1)}$
S., . $_{1}$ each ϕ_{i} is G-equivariant and

$$
X^{(k)}=X^{(k-1)} \cup\left(e_{i}^{k} \times G / H_{i}\right) / \text { ~ }
$$

we can take $E G$ to be a GCW-complex
exercise:

1) if X a GCW-complex then X / G has the structure of a CW complex
2) if G is a compact Lie group then any principal G-bundle over a $C W$-complex is a GCW-complex

Proof of $\pi_{h}{ }^{m} 13$: let M be a $C W$-complex clearly $\psi:[M, B G] \rightarrow$ Print ${ }^{G}(M) \stackrel{5}{ }$ here we consider only $\frac{P}{m}$

$$
f \longmapsto f^{*} E G
$$ with Pa GCw-complex

is well-defined by Th III. 1
Claim: ψ is surjective
indeed, given $\underset{M}{P}$ we construct $h: P \rightarrow E G$ skeleta-by-skeleta
St h is G-equivariant and maps G orbits
is P homeomorphically onto image since G action on P is free all strata are attachments of $e^{k} \times G$ to $p^{(k-1)}$
now $p^{(0)}=\{p+\} \times G$ and we can clearly map this to a fiber of EG
now if $h_{k-1}: p^{(k-1)} \rightarrow E G$ defined we try to extend over $e^{k} \times G$
consider the disk $e^{k} \times\{1\} \subset e^{k} \times G$
h_{k-1} is defined on $\partial e^{k} \times\{1\} \subset p^{(k-1)}$ and $\left.h_{k-1}\right|_{\partial e^{k} \times\{1\}}$ extends to $e^{k} \times\{1\}$

If it is null-homotopic
since $E G$ is weakly contractible $\left.h_{k-1}\right|_{\partial e^{k} \times\{1\}}$
extends to $h:\left(e^{k} x\{1\}\right) \longrightarrow E G$
now define h_{k} on $e^{k} \times G$ by extending
h on $e^{k} \times\{1\}$ G-equivaráantly

$$
\text { see } \quad h_{k}: e^{k} \times G \rightarrow E G:(p, g) \longmapsto h(p) \cdot g
$$

clearly $h_{h}: p^{(k)} \longrightarrow E G$ is G-equivariant and a homes. on orbits so we have $h: P \rightarrow E G$
this induces a map $f: M=P / G \rightarrow B G=E Q / G$

we now have

$$
\begin{aligned}
& P \rightarrow f^{*} E G=\{(x, v) \in M \times E G: f(x)=p(v)\} \\
& w \longmapsto(g(w), h(x))
\end{aligned}
$$

exercise: Show this is an isomorphism
Claim: ψ is injective
Suppose we have $f_{2}: M \rightarrow B G \quad 2=0,1$ and
$\Phi: f_{0}^{*} E G \longrightarrow f_{1}^{*} E G \quad$ (assume cellular)
is an isomorphism
we need to construct a hamotopy fo to f_{1} since f_{i} are cellular and EG a GCW-complex one can check $f_{1}^{*} E G$ are $G C W$-complexes define the prisicial G-bundle $\bar{P} \rightarrow M \times[0,1]$ by

$$
\bar{\rho}=\left[\left(f_{0}^{*} E G\right) \times[0,1 / 2]\right] \cup_{\Phi}\left[\left(f_{1}^{*} E G\right) \times[1 / 2,1]\right]
$$

oven $\mu_{x}\{0,1\}$ be define H by bundle mops covering f_{i}

just as in the surjective case we can extend
this to an equivariont map

$$
H: \bar{P} \rightarrow E G
$$

that induces a homes on fibers and H incluces a map on the quotient spaces

$$
F: M \times[0,1] \rightarrow B G
$$

that is a homotopy f_{0} to f_{1}

Proof of $T_{\mathrm{H}}^{\mathrm{m}} 14$:

universal bundles
by $T h^{m}{ }^{m}, \exists$ maps $f: B \rightarrow B_{2}$ and $g: B_{2} \rightarrow B_{1}$
Such that $E_{1} \cong f^{*} E_{2}$ and

$$
E_{2} \cong g^{*} E_{1}
$$

now $g \circ f: B_{1} \rightarrow B_{1}$

$$
\text { and } \begin{aligned}
(g \circ f)^{*} E_{1} & =f^{*}\left(g^{*}\left(E_{1}\right)\right) \\
& \cong f^{*}\left(E_{2}\right) \\
& \cong E_{1}
\end{aligned}
$$

thus $(g \circ f)^{*} E_{1}=1 \dot{d}_{B_{1}}^{*} E_{1}$

So by $T h{ }^{m} 13 \quad g \circ f \simeq \dot{d}_{B}$,
similarly fog $\simeq 1 d_{B_{2}}$
So $B_{1} \simeq B_{2}$
we are left to see classifying spaces exist, for this we need If X, Y are two spaces, then their join is

$$
X * Y=X \times[0,1] \times Y / \sim
$$

where $\left(x, 0, y_{1}\right) \sim\left(x, 0, y_{2}\right) \quad \forall y_{1} y_{2} \in Y$ and $\left(x_{1}, 0, y\right) \sim\left(x_{2}, 0, y\right) \quad \forall x_{1} x_{2} \in X$

collapse

note: there is an reclusion

$$
\begin{aligned}
& X \xrightarrow{i} X * Y \\
& x \longmapsto(x, 0, y) \quad \text { for any } y \in Y
\end{aligned}
$$

and

$$
\begin{aligned}
& Y \xrightarrow{ } \longrightarrow X * Y \\
& y \longmapsto(x, 1, y) \quad \text { for any } x \in X
\end{aligned}
$$

examples:

1) $X *\{p\} \approx C X$
indeed $X *\{p\}=X \times[0,1] / \times \times\{0\}$
2) similarly $X *\left\{p_{1}, p_{2}\right\} \cong \sum X$

3) $\left\{x_{0}\right\} *\left\{x_{1}\right\} * \ldots *\left\{x_{k}\right\}$ is a $k-\operatorname{simple} x$
4) exercise: $S^{n} * S^{m} \cong S^{n+m+1}$
lemma 15:
the inclusions $i: X \rightarrow X * Y$ and $j: Y \rightarrow X * Y$ from above are null-homotopic

Proof: for any $y_{0} \in Y$ not $j^{-}: X \rightarrow X * Y$ factors through

$$
\begin{aligned}
& X \hookrightarrow X *\left\{y_{0}\right\} \subset X * Y \\
& X \mapsto\left(x_{0}, y_{0}\right)
\end{aligned}
$$

but $X *\left\{y_{0}\right\} \cong C X$ and hence is contractible

$$
\therefore \text { i noll-homotopic }
$$

similarly for j
now given a topological group G
let $G^{*(k+1)}=\underbrace{G * G * \ldots G}_{k+1 \text { times }}$
this has a G action given by

$$
\left(g_{0}, t_{1}, g_{1}, t_{2}, \ldots t_{k}, g_{k}\right) \cdot g=\left(g_{0} g, t_{1}, g_{1}, t_{2}, \ldots, t_{k}, g_{k} g\right)
$$

exencose:

1) Prove that \exists a natural G-equivariant map

$$
\Delta^{k} \times G^{k+1} \longrightarrow G^{*(n+i)}
$$

that is a homeomorphism when restricted to int $\Delta^{k} \times G^{k+1}$
(here G acts trivially on Δ^{k} and diagonally on G^{h+1}
2) Use above to show $G^{*(k+1)}$ has the structure of a GCW-complex
let $f(G)=\lim _{h \rightarrow \infty} G^{*(h+1)}$
Tr m 16:
the quotient map

$$
p: \mathscr{L}(G) \rightarrow \mathcal{L}(G) / G
$$

is a universal principal G-bundle

Proof: prove $p: \mathcal{H}(G) \rightarrow \mathcal{H}(G) / G$ is a principal G-bundle
to show $\mathcal{f}(G)$ is weakly contractible note that for any mop $\alpha: S^{n} \rightarrow \notin(G)$
$\exists k$ st. $\alpha\left(S^{n}\right) \subset G^{n(k+1)} \subset \mathcal{J}(G)$ and $G^{*(k+1)}$ is null-homotopic in $G^{*(k+2)} \subset f(G)$ by lemma 15 $\therefore \alpha$ nuth-homotopic in $\mathcal{f}(G)$
from the construction above note that given $f: H \rightarrow G$ a homomorphism then we get an induced mop
$E f: E H \rightarrow E G$
$f^{\prime \prime}(H) \quad f^{\prime \prime}(G)$
and $B f: B H \rightarrow B G$
exercise:

1) Bf is the classifying map for the bundle $\quad B H x_{f} G \rightarrow B H$
2) If $H<G$ and $\stackrel{P}{\perp} \underset{M}{ }$ a principal G-bundle show the structure group of P reduces to H of the classifying mop $f: M \rightarrow B G$ (after homotopy) to $M \rightarrow B H$

$$
M \xrightarrow[f]{\ldots} B G \quad \underset{\substack{B H}}{\substack{\text { Bi }}} \quad \begin{aligned}
& \text { 2: } \\
& \text { inclusion }
\end{aligned}
$$

Here is another view of characteristic classes Th ${ }^{\mathrm{m}} 17$:

$$
H^{*}(B O(n) ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2\left[w_{1}, w_{2}, \ldots w_{n}\right]
$$

where w_{i} has grading i

$$
H^{*}(B \cup(n) ; \mathbb{Z} / 2) \cong \mathbb{E}\left[c_{1}, c_{2}, \ldots, c_{n}\right]
$$

where c_{i} has grading $2 i$

Remark: we might prove this later, but we can use T^{m} 17 to define characteristic classes given an \mathbb{R}^{n}-bundle | E |
| :--- |
| $\underset{M}{d}$ | there is an associated $O(n)$-bundle $F(E)$ and by Th $^{m} 13$ Ja map $f: ~ M \rightarrow B O(n)$ s.t $f^{*} E O(n) \cong \mathcal{F}(E)$

define $w_{i}(E)=f^{*} w_{i}$
similarly for C_{i}
What about Pontryagin classes or Euler class? recall given a short exact sequence

$$
0 \rightarrow H \rightarrow G \rightarrow K \rightarrow 0
$$

of abelian groups, we get a long exact sequence

$$
\ldots \rightarrow H_{n}(M ; H) \rightarrow H_{n}(M ; G) \rightarrow H_{n}(M ; K) \rightarrow H_{n-1}(M ; H) \rightarrow \ldots
$$

so from $0 \rightarrow \mathbb{Z} \xrightarrow{x^{2}} \mathbb{Z} \rightarrow \mathbb{Z} / 2 \rightarrow 0$ we get

$$
H_{n}(M) \xrightarrow{\times 2} H_{n}(M) \rightarrow H_{n}(M ; \mathbb{Z} / 2) \xrightarrow{\beta} H_{n-1}(n)
$$

β is called the Bockstein map

$$
\text { Th }{ }^{m} 18:
$$

$$
H^{*}(B S O(2 n+1) ; z)=\mathbb{Z}\left[p_{1}, \ldots, p_{n}\right] \oplus \text { Torsion }
$$

where Torsion $=\beta(H^{*}(\underbrace{B S O(2 n+1) ; \mathbb{Z} / 2)}_{\mathbb{Z} / 2\left[w_{2}, \ldots, w_{2 n+1}\right]})$

$$
H^{*}\left(B S O(2 n) ; \mathbb{Z}=\mathbb{Z}\left[\rho_{1}, \ldots, \rho_{n}, e\right] /\left\langle e^{2}=\rho_{n}\right\rangle\right. \text { Torsion }
$$

where Torsion is as above

